پیش بینی روزانه غلظت کربن منوکسید با استفاده از مدل تلفیقی انتخاب پیشرو- عصبی فازی براساس تحلیل پایداری جوّ؛ بررسی موردی: شهر تهران

نویسندگان

خسرو اشرفی

غلامعلی هشیاری پور

بابک نجار اعرابی

هما کشاورزی شیرازی

چکیده

امروزه، آلودگی هوای کلان شهرها به یک چالش زیست محیطی اساسی تبدیل شده است. در مورد شهر تهران، که 90 درصد از وزن کل آلاینده های هوای آن از خودروها منتشر می شود، کربن منوکسید نسبت به بقیه آلاینده های هوا اهمیت بیشتری دارد، به طوری که بیش از 75 درصد وزن آلاینده های این شهر را دربر می گیرد. با توجه به اینکه تحلیل پایداری لایه سطحی جوّ، درحکم شاخص وضعیت تلاطمی آن، بیشترین اثر را در پراکنش آلاینده های هوا دارد، می تواند در پیش بینی آلودگی هوا مورد توجه قرار گیرد. در این تحقیق به منظور تحلیل وضعیت پایداری جوّ نزدیک سطح زمین، دو نگرش مورد توجه قرار گرفته است: در نگرش اول سرعت باد، درحکم شاخص تلاطم مکانیکی و تابش خورشیدی درحکم شاخص تلاطم همرفتی منظور شده و در نگرش دوم، مقیاس سرعت اصطکاکی، به منزلة شاخص تلاطم مکانیکی و گرادیان دما، به منزلة شاخص تلاطم همرفتی مورد توجه قرار گرفته است. براساس این دو نگرش، دو مجموعه مدل عصبی- فازی به منظور پیش بینی غلظت روزانه کربن منوکسید در جوّ تهران توسعه داده شده اند که در هر مجموعه یک مدل بدون اِعمال انتخاب ورودی و یک مدل با اِعمال انتخاب ورودی درنظر گرفته شده است. انتخاب ورودی مدل ها با استفاده از روش انتخاب پیشرو صورت گرفته است تا تعداد ورودی های مدل تا حد امکان کاهش یابد. پس از مقایسه نتایج پیش بینی مدل ها، مشخص شد که اِعمال روش انتخاب پیشرو با کاهش تعداد ورودی ها نه فقط حجم محاسبات را کاهش می دهد بلکه بر دقت مدل نیز می افزاید. درنهایت، مدل توسعه داده شده براساس گرادیان باد و گرادیان دما درحکم مدل برتر معرفی شده است.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیش‌بینی روزانه غلظت کربن منوکسید با استفاده از مدل تلفیقی انتخاب پیشرو- عصبی فازی براساس تحلیل پایداری جوّ؛ بررسی موردی: شهر تهران

امروزه، آلودگی هوای کلان‌شهرها به یک چالش زیست‌محیطی اساسی تبدیل شده است. در مورد شهر تهران، که 90 درصد از وزن کل آلاینده‌های هوای آن از خودروها منتشر می‌شود، کربن منوکسید نسبت به بقیه آلاینده‌های هوا اهمیت بیشتری دارد، به‌طوری‌که بیش از 75 درصد وزن آلاینده‌های این شهر را دربر می‌گیرد. با توجه به اینکه تحلیل پایداری لایه سطحی جوّ، درحکم شاخص وضعیت تلاطمی آن، بیشترین اثر را در پراکنش آلاینده‌های ...

متن کامل

مقایسه کاربرد روش های شبکه عصبی مصنوعی و رگرسیون خطی چندمتغیره براساس تحلیل مؤلفه های اصلی برای پیش بینی غلظت میانگین روزانه کربن مونوکسید: بررسی موردی شهر تهران

هدف از این مقاله، پیش بینی میانگین غلظت روزانه کربن مونوکسید در هوای شهر تهران با استفاده از دو مدل شبکه عصبی مصنوعی و رگرسیون خطی چندمتغیره برحسب تحلیل مؤلفه اصلی (pca) است. از روش pca برای از بین بردن هم راستایی چندگانه (multicolinearity) بین متغیرهای ورودی و تفسیر بهتر نتایج مدل رگرسیونی استفاده شده است. همچنین با استفاده از شبکه عصبی feed-forward با یک لایه پنهان نیز مدل مناسب برای این ام...

متن کامل

مقایسة دو روش مدل‌سازی با استفاده از شبکة عصبی- فازی در پیش بینی غلظت آلایندة مونوکسید کربن

پایش و پیش‌بینی مشخصه‌های کیفیت هوا در مناطق شهری یکی از چالش‌های محیط زیست انسانی محسوب می‌شود. این مهم وابسته به عوامل متعددی مانند توپوگرافی، اقلیم، جمعیت و شبکة حمل ‌و ‌نقل است که نحوة تعامل این عوامل مکانی به عنوان پدیده‌‌ای دینامیک، غیر خطی و دارای ابهام عنوان شده است. در این تحقیق به منظور پیش بینی و مدل‌سازی میزان آلاینده مونوکسیدکربن از شبکة عصبی- فازی و GIS در قالب دو مدل متفاوت استفا...

متن کامل

طراحی مدل پیش بینی حجم ترافیک روزانه برون شهری با استفاده از سیستم استنتاج فازی مبتنی بر شبکه عصبی(ANFIS)

 تقاضای روزافزون استفاده از وسایل حمل و نقل شخصی، مشکل تراکم ترافیک را به یکی از مهم ترین بحران ها در اکثر کلان شهرهای جهان تبدیل کرده است. تأثیرات زیست محیطی، اجتماعی و اقتصادی که گره های ترافیکی بر جوامع بشری می گذارد محققین را برآن داشته است که به دنبال راه کارهایی برای مقابله با آن باشند. یکی از این راه کارها پیش بینی حجم ترافیک روزانه است. پیش بینی ترافیک به کنترل کننده ها کمک می کند ت...

متن کامل

پیش بینی خشکسالی با استفاده از مدل تلفیقی شبکه عصبی مصنوعی- موجک و مدل سری زمانیARIMA

تبدیل موجک یکی از روش­های نوین و بسیار موثر در زمینه تحلیل سیگنال­ها و سری­های زمانی است. در این روش سیگنال شاخص بارش استاندارد (SPI) با استفاده از موجک مادر منتخب تجزیه شده، داده­های حاصل به­عنوان ورودی مدل شبکه عصبی مصنوعی در نظر گرفته شده و یک مدل تلفیقی برای پیش­بینی خشکسالی ارائه می­گردد. در این تحقیق، از شبکه­های عصبی مصنوعی پرسپترون چند لایه (MLP) و تابع پایه‌ای شعاعی ((RBF، سری زمانی AR...

متن کامل

مقایسة دو روش مدل سازی با استفاده از شبکة عصبی- فازی در پیش بینی غلظت آلایندة مونوکسید کربن

پایش و پیش بینی مشخصه های کیفیت هوا در مناطق شهری یکی از چالش های محیط زیست انسانی محسوب می شود. این مهم وابسته به عوامل متعددی مانند توپوگرافی، اقلیم، جمعیت و شبکة حمل و نقل است که نحوة تعامل این عوامل مکانی به عنوان پدیده ای دینامیک، غیر خطی و دارای ابهام عنوان شده است. در این تحقیق به منظور پیش بینی و مدل سازی میزان آلاینده مونوکسیدکربن از شبکة عصبی- فازی و gis در قالب دو مدل متفاوت استفاده ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
فیزیک زمین و فضا

ناشر: موسسه ژئوفیزیک دانشگاه تهران

ISSN 8647-1025

دوره 38

شماره 2 2012

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023